
Synthetic Data Pipeline for Pose Estimation
Software Test Document

Team Members:
William Stern - western2019@my.fit.edu
Stephane Baruch - vjani2018@my.fit.edu
Nathan Pichette - npichette2018@my.fit.edu
Hanibal Alazar - halazar2019@my.fit.edu

Advisor:
Dr. Ryan White



1. Introduction
Objective:
The objective of this test plan is to explain the conditions and procedures necessary to

ensure our synthetic data pipeline works properly. To do this we will list multiple testing ideas
along with methods for completion and expected results.

1.1.1.

TC001 - Satellite model Input

Description: Our API will allow for the user to choose from a list of satellite models which
they want to be rendered into their video clip

Goal: The system will pull the satellite object file from our catalog and insert it properly into
blender with correct coloration and model features

Precondition: User has access to the satellite model data and a proper path to the file is loaded
into the system

Test Steps:
1. Start application
2. Navigate to satellite dropdown
3. Choose specific satellite model
4. Input basic conditions for motion,

light, and background
5. Press complete button
6. Find and examine rendered clip

Expected Results:
1. Rendered clip will show the correct

satellite model with texture within the
predetermined environment scenario

1.1.2.

TC002 - Satellite Flight path

Description: The API will allow for the user to input a complex path that a satellite model will
follow in a rendered clip that is returned to the user.

Goal: Our pipeline will take in input for a complex path when a rendered clip is produced the
satellite model should correctly follow the input.

Precondition: User has access to the satellite model data and correctly formatted path to
submit to the API

Test Steps:
1. Start application
2. Navigate to flight path

Expected Results:
1. Rendered clip will show the satellite

model moving correctly through



3. Enter a complex flight path
4. Input basic conditions for model used,

light, and background
5. Press complete button
6. Find and examine rendered clip

predetermined environment conditions

1.1.3.

TC003 - Rotation

Description: The API will allow for the user to add rotation in any direction to the satellite
model. The rotation will be in addition to the path traveling.

Goal: Our pipeline will take in input for a rotational pattern and apply that pattern to a satellite
model while it travels along a path

Precondition: User has access to the satellite model data

Test Steps:
1. Start application
2. Navigate to rotation
3. Enter rotation direction
4. Input basic conditions for model used,

light, background, and path
5. Press complete button
6. Find and examine rendered clip

Expected Results:
1. Rendered clip will show the satellite

model rotating correctly while
traveling on path through
predetermined environment conditions

1.1.4.

TC004 - Lighting position and strength

Description: The API will allow for the user to customize the location of the light source as
well as the brightness

Goal: Our pipeline will take in input for a light source's location and strength, a rendered clip
is produced and the satellite model should be correctly lit based on specifications

Precondition: User has access to the satellite model data and understanding of lightsource
positioning in 3D space

Test Steps:
1. Start application
2. Navigate to lighting section
3. Enter lighting location and strength

Expected Results:
1. Rendered clip will show the satellite

model moving along path with correct
shadowing and brightness



4. Input basic conditions for model used,
path, and background

5. Press complete button
6. Find and examine rendered clip

1.1.5.

TC005 - API Usability Test

Description: This will test to make sure that the API will be usable by the target user.

Goal: When given access to the API the user should be able to generate a sample video.

Precondition: The user should be familiar with computer and computer programming. The
user will also have access to documentation showing how the API works.

Test Steps:
1. Give user API access and

documentation about how to run the
API

2. Instruct user to use API to develop a
certain scenario

3. Observe what user does
4. Have one of us developers try to

generate the same scenario
5. Compare user scene versus developer

created string

Expected Results:
1. The user should be able to develop

scenes that are close to what one of the
developers can generate when given
documentation.

1.1.6.

TC006 - Machine Learning Test

Description: This will test to make sure that the generated videos are able to teach the
machine learning model to how estimate pose

Goal: When given generated video scenes for training the NETS lab should be able to estimate
pose using their simulated test.

Precondition: The user should have access to a computer with a GPU. The user should also
have access to a test bench for satellite pose estimation.

Test Steps:
1. Generate a lot of scenes and

corresponding poses
2. Train the neural network using those

scenes
3. Test the neural network using the

Expected Results:
2. The neural network should be able to

correctly generate pose based on
synthetic training data



satellite test machine.

1.1.7.

TC007 - Multiple System Test

Description: This will test to make sure the software will be compatible with different
hardware configurations and operating systems.

Goal: The program should be able to generate the same exact videos when given the same
configuration file on different systems.

Precondition: The user should be familiar with computer and computer programming. The
user will also have access to documentation showing how the API works.

Test Steps:
1. Prepare a Windows PC, a Mac PC,

and a Linux os.
2. Install the software onto the operating

systems.
3. Give the software the same

configuration files and generate
videos.

4. Compare the output videos

Expected Results:
1. The generated videos should be

exactly the same when using
something like cosine similarity to
compare them.

1.1.8.

TC008 - Setup Test

Description: Since this program is used on multiple computer systems, on laptops, and on the
cloud, it would be great if it was easy to install and setup.

Goal: The user should be able to install the software within 10 minutes on any operating
system.

Precondition: The user should be familiar with computer and computer programming.

Test Steps:
1. Start timer
2. Download all the software and

software requirements
3. Install the program
4. End timer when you can start

generating a video

Expected Results:
1. The user should be able to install and

start generating videos within 10
minutes on any common operating
system.



1.1.9.

TC009 - Stress Test

Description: The program should be able to warn users if the input will take a very long time
to generate, and if there are any problems.

Goal: When given parameters for a scene generation, the program should warn users if the
generation will take more than 1 hour. The program should also warn users if there are
potential problems such as intersecting objects.

Precondition: The user should be familiar with computer and computer programming.

Test Steps:
1. Generate a configuration file that

should still generate but takes 5 hours
or more and has intersecting objects.

2. When run using the configuration file,
the API should start running but
should warn users about potential
problems.

Expected Results:
1. The users should be given a warning

telling them what might go wrong
with the generation. The warning
should also give line numbers so the
user can investigate and fix the
problem.


