Synthetic Data Pipeline for Pose Estimation Software Test Document

Team Members:

William Stern - western2019@my.fit.edu Stephane Baruch - vjani2018@my.fit.edu Nathan Pichette - npichette2018@my.fit.edu Hanibal Alazar - halazar2019@my.fit.edu

Advisor:

Dr. Ryan White

1. Introduction

Objective:

The objective of this test plan is to explain the conditions and procedures necessary to ensure our synthetic data pipeline works properly. To do this we will list multiple testing ideas along with methods for completion and expected results.

1.1.1.

TC001 - Satellite model Input

Description: Our API will allow for the user to choose from a list of satellite models which they want to be rendered into their video clip

Goal: The system will pull the satellite object file from our catalog and insert it properly into blender with correct coloration and model features

Precondition: User has access to the satellite model data and a proper path to the file is loaded into the system

Expected Results:

1. Rendered clip will show the correct

satellite model with texture within the

predetermined environment scenario

- 1. Start application
- 2. Navigate to satellite dropdown
- 3. Choose specific satellite model
- 4. Input basic conditions for motion, light, and background
- 5. Press complete button
- 6. Find and examine rendered clip

1.1.2.

TC002 - Satellite Flight path

Description: The API will allow for the user to input a complex path that a satellite model will follow in a rendered clip that is returned to the user.

Goal: Our pipeline will take in input for a complex path when a rendered clip is produced the satellite model should correctly follow the input.

Precondition: User has access to the satellite model data and correctly formatted path to submit to the API

Test Steps:	Expected Results:
1. Start application	1. Rendered clip will show the satellite
2. Navigate to flight path	model moving correctly through

 Enter a complex flight path Input basic conditions for model used, light, and background 	predetermined environment conditions
 5. Press complete button 6. Find and examine rendered clip 	

1.1.3.

TC003 - Rotation

Description: The API will allow for the user to add rotation in any direction to the satellite model. The rotation will be in addition to the path traveling.

Goal: Our pipeline will take in input for a rotational pattern and apply that pattern to a satellite model while it travels along a path

Precondition: User has access to the satellite model data

Test Steps:	Expected Results:
 Start application Navigate to rotation Enter rotation direction Input basic conditions for model used, light, background, and path Press complete button 	 Rendered clip will show the satellite model rotating correctly while traveling on path through predetermined environment conditions
6. Find and examine rendered clip	

1.1.4.

TC004 - Lighting position and strength

Description: The API will allow for the user to customize the location of the light source as well as the brightness

Goal: Our pipeline will take in input for a light source's location and strength, a rendered clip is produced and the satellite model should be correctly lit based on specifications

Precondition: User has access to the satellite model data and understanding of lightsource positioning in 3D space

Test Steps:	Expected Results:
1. Start application	1. Rendered clip will show the satellite
2. Navigate to lighting section	model moving along path with correct
3. Enter lighting location and strength	shadowing and brightness

 Input basic conditions for model used, path, and background
 Press complete button
 Find and examine rendered clip

1.1.5.

TC005 - API Usability Test

Description: This will test to make sure that the API will be usable by the target user.

Goal: When given access to the API the user should be able to generate a sample video.

Precondition: The user should be familiar with computer and computer programming. The user will also have access to documentation showing how the API works.

Test Steps:	Expected Results:
1. Give user API access and documentation about how to run the API	1. The user should be able to develop scenes that are close to what one of the developers can generate when given
2. Instruct user to use API to develop a certain scenario	documentation.
3. Observe what user does	
4. Have one of us developers try to generate the same scenario	
 Compare user scene versus developer created string 	

1.1.6.

TC006 - Machine Learning Test

Description: This will test to make sure that the generated videos are able to teach the machine learning model to how estimate pose

Goal: When given generated video scenes for training the NETS lab should be able to estimate pose using their simulated test.

Precondition: The user should have access to a computer with a GPU. The user should also have access to a test bench for satellite pose estimation.

Test Steps:	Expected Results:
1. Generate a lot of scenes and	2. The neural network should be able to
corresponding poses2. Train the neural network using those	correctly generate pose based on synthetic training data
scenes 3. Test the neural network using the	

satellite test machine.	
-------------------------	--

1.1.7.

TC007 - Multiple System Test

Description: This will test to make sure the software will be compatible with different hardware configurations and operating systems.

Goal: The program should be able to generate the same exact videos when given the same configuration file on different systems.

Precondition: The user should be familiar with computer and computer programming. The user will also have access to documentation showing how the API works.

Test Steps:	Expected Results:
1. Prepare a Windows PC, a Mac PC, and a Linux os.	1. The generated videos should be exactly the same when using
 Install the software onto the operating systems. 	something like cosine similarity to compare them.
 Give the software the same configuration files and generate videos. 	
4. Compare the output videos	

1.1.8.

TC008 - Setup Test

Description: Since this program is used on multiple computer systems, on laptops, and on the cloud, it would be great if it was easy to install and setup.

Goal: The user should be able to install the software within 10 minutes on any operating system.

Precondition: The user should be familiar with computer and computer programming.

Test Steps:	Expected Results:
1. Start timer	1. The user should be able to install and
 Download all the software and software requirements Install the program End timer when you can start generating a video 	start generating videos within 10 minutes on any common operating system.

TC009 - Stress Test

Description: The program should be able to warn users if the input will take a very long time to generate, and if there are any problems.

Goal: When given parameters for a scene generation, the program should warn users if the generation will take more than 1 hour. The program should also warn users if there are potential problems such as intersecting objects.

Precondition: The user should be familiar with computer and computer programming.

Test Steps:	Expected Results:
 Generate a configuration file that	1. The users should be given a warning
should still generate but takes 5 hours	telling them what might go wrong
or more and has intersecting objects. When run using the configuration file,	with the generation. The warning
the API should start running but	should also give line numbers so the
should warn users about potential	user can investigate and fix the
problems.	problem.